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While electronic health records present a rich and promising data source
for observational research, they are highly susceptible to missing data. For
settings like these, Seaman et al. (Biometrics 68 (2012) 129—-137) proposed
a strategy wherein one handles missingness in some variables using inverse-
probability weighting and others using multiple imputation. Seaman et al.
(Biometrics 68 (2012) 129-137) show that Rubin’s variance estimator for
averaging results across datasets is asymptotically valid when the analysis
and imputation models are correctly specified and the weights are either
known or correctly specified. Modeled after the approach of Robins and
Wang (Biometrika 87 (2000) 113-124), we propose a method for asymptoti-
cally valid inference that is robust to violation of these conditions. Following
a simulation study in which we demonstrate that a proposed variance estima-
tor can reduce bias due to model misspecification, we illustrate this approach
in an electronic health records-based study investigating whether differences
in long-term weight loss between bariatric surgery techniques are associated
with chronic kidney disease at baseline. We observe that the weight loss ad-
vantage after five years of Roux-en-Y gastric bypass surgery, compared to
vertical sleeve gastrectomy, is less pronounced among patients with chronic
kidney disease at baseline compared to those without.

1. Introduction. Electronic health records (EHR) present an enormous opportunity for
conducting observational research and include information on large populations over long
periods of time. While EHR data are relatively inexpensive to obtain, they are generated for
clinical and/or billing purposes, not research (Bruce Bayley et al. (2013), Haneuse and Short-
reed (2017)). Upon defining a research question and the set of variables needed to perform an
observational study answering that question using EHR data, it is rarely the case that all vari-
ables are routinely collected in clinical care, and such data is often not collected consistently
across time. Indeed, missing data is extremely common in EHR-based studies, and, while it is
possible to perform an intended analysis using only “complete cases” (i.e., those individuals
with no missing data in the variables needed to perform the analysis), such an analysis may
be subject to selection bias if the associations of interest are different in the included and
excluded populations (Haneuse (2016), Seaman and White (2013)).

Consider a hypothetical study of the association between covariates X1, X2, X3 and out-
come Y, perhaps through the statistical model ¥ = f (X1, X2, X3; 6), where 0 is the param-
eter that indexes that model and is the quantity of interest. We refer to the statistical model
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TABLE 1
Missingness patterns for a hypothetical study population

Pattern X1 X» X3 Y Z Z>
1 v v v v
2 v v v v v
3 v v v v v
4 v v v v v v
5 v v v
6 v v v v
7 v v v

8 v v v v

For each missingness pattern, v' indicates that the variable is observed. A blank space indicates that the variable
is missing.

being fit in this study as the analysis model. In practice, suppose we observe a population
consisting of individuals with varying missingness patterns in the data as described in Ta-
ble 1. Auxiliary variables (i.e., those not directly involved in the analysis model) Z; and
Z, are also recorded. Analysts have at their disposal a wide range of tools for dealing with
missingness in the analysis model variables, including inverse-probability weighting (IPW),
multiple imputation (MI) and doubly-robust methods. In IPW, one initially constructs and fits
a model for the probability of being a complete case for the analysis model variables (miss-
ingness pattern 4 in Table 1). Then, an analysis is performed using only the complete cases
but with their contributions weighted by the inverse of their estimated probabilities of being
a complete case (Seaman and White (2013)). In contrast, an MI analysis first constructs and
fits a model for the joint distribution of the analysis model variables that exhibit missingness
(X2, X3,7Y), conditional on the analysis model variables that are fully observed (X ) as well
as any fully observed variables associated with missingness or the values of the missing vari-
ables (Z1, potentially). One generates M “complete” datasets by using this distribution to
impute any missing values. The analysis model is fit on all complete datasets, and the results
are averaged over the completed datasets (Kenward and Carpenter (2007)). Doubly-robust
methods augment standard IPW methods, in a sense, by specifying a second model for the
distribution of the missing variable(s) in addition to the model for the probability of being
a complete case. Doubly-robust methods, unlike IPW or MI alone, allow the analyst to per-
form unbiased estimation and inference that is “robust” to model misspecification, if either
the model for the distribution of the missing data or the model for the probability of being a
complete case is correctly specified (Bang and Robins (2005)).

When both auxiliary models are correctly specified, so that [IPW alone, MI alone and the
doubly-robust estimator are all consistent, MI is known to be most efficient. Seaman et al.
(2012) proposed a novel strategy that combines IPW and MI in a way that is distinct from
established doubly-robust methods. Rather than positing a model for the probability that all
missing variables are observed as well as a model for the distribution of all missing variables
(as in doubly-robust methods), the analyst begins by partitioning the set of variables with
missingness into those handled using IPW and those handled using MI and then specifying
separate models for each.

In the Seaman et al. (2012) approach, the analyst first specifies some rule to identify a
subset of individuals whose missing values will be multiply imputed, say, those with X» ob-
served (missingness patterns 1-4 in Table 1). Subjects who fail to meet the inclusion criteria
are excluded from the main analysis. Then, any remaining missing variables (X3 and/or Y
in individuals with missingness patterns 1-3) have their values imputed. Following multiple
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imputation, M “quasi-complete” datasets are generated, so called because data is complete
only for individuals who meet the analyst-specified rule. Each quasi-complete dataset is then
analyzed using IPW to account for exclusion of individuals who failed to meet the inclusion
criteria and from which M point estimates, oM .. , M) are obtained. For each of these
analyses, a sandwich-type estimator of the variance is used to account for estimation and use
of IPW (Robins, Rotnitzky and Zhao (1994)), yielding \7(1), R v, Finally, an overall es-
timate § = M~ ijzl 6 is computed, with inference based on an estimate of the variance

of § that uses Rubin’s rules (Rubin (2004)):
o1y a+MHY M
V=_—_ 4% o — g\ @W — o\
M 12::1 + M —-1) ;( ) )

Theorem 1 of Seaman et al. (2012) establishes conditions for the consistency of 6 as an
estimator of 6, while Theorem 2 establishes consistency of V' as an estimator of the variance
of 6 when:

(c.1) the analysis model is a linear regression and is correctly specified,

(c.2) the outcome variable is properly imputed from its posterior predictive distribution
using the regression imputation procedure of Schenker and Welsh (1988),

(c.3) all of the pairwise interactions between the inclusion criteria selection weights and
the variables used in the weighting model are included in the imputation model as covariates,

(c.4) the imputation model is correctly specified, and

(c.5) the weights used for IPW are known.

Quartagno, Carpenter and Goldstein (2019) developed a strategy for incorporating weights
when multiple imputation is used, proposing a method in which the weights form distinct
strata and the covariance matrices in the imputation model follow a random distribution
across strata such that condition (c.3) is met. Seaman et al. (2012) observed, via theoreti-
cal results and simulations, that V is approximately unbiased in settings where covariates
are imputed in addition to the outcome. Practically, they found that, when both weighting
and imputation models were correctly specified, combining IPW with MI offered efficiency
advantages compared to using IPW alone, whereas MI alone was most efficient. However,
when the imputation model was misspecified (thus violating condition c.4), point estimates
obtained using IPW and MI were less biased than those obtained using MI alone.

This paper is concerned with settings where researchers employ the framework of Seaman
et al. (2012) but that the weighting, imputation and/or analysis models are potentially mis-
specified. If this is the case, then 6 will converge to some value, #*, which may or may not
equal 6. Regardless of whether 6* equals 6, which may occur in some settings, valid inference
remains of interest. Indeed, this is the central concern of the seminal paper by White (1982),
which focuses on valid likelihood-based inference in the presence of model misspecification,
as well as more recent work in this area (Abadie, Imbens and Zheng (2014), Imbens and
Kolesar (2016), Stefanski and Boos (2002)). However, Rubin’s rules, as presented above, are
only guaranteed to generate asymptotically valid inference concerning 8* when the weight-
ing, imputation and analysis models are correctly specified. Since one or more of these mod-
els may be misspecified, we propose a novel analysis strategy for the Seaman et al. (2012)
framework that enables the analyst to conduct inference that is robust to misspecification of
the weighting, imputation and analysis models while remaining asymptotically valid. Toward
this, we consider an alternative estimator of 6, denoted 0 , that is based on an improper im-
putation procedure, as defined by Wang and Robins (1998), rather than proper imputation.
Henceforth, robust inference in this paper refers to valid variance estimation for 6 in the
presence of model misspecification, regardless of whether ¢ converges to 6. That is, Wald
intervals generated for 6 will, in large samples, achieve their nominal coverage about 6*.
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Robins and Wang (2000) considered misspecification in the analysis and imputation mod-
els in the setting where improper multiple imputation alone is used to handle missing data.
They propose a variance estimator for that setting that is robust to misspecification of these
models. In this paper we extend their approach and propose a variance estimator that incorpo-
rates inverse-probability weights while maintaining these robustness properties. Because we
use a sandwich-type estimator to account for estimation and use of the weights, the proposed
variance estimator also demonstrates robustness against misspecification of the weighting
model.

The remainder of this paper is as follows. In Section 2 we describe motivating questions
in assessing the efficacy of bariatric surgery among individuals with and without chronic
kidney disease. We describe the methodology for estimation and inference in Section 3. A
worked example is provided in Section 4, while Section 5 presents a simulation study that
investigates small-sample properties, including the robustness of inference of the proposed
methods relative to that proposed by Seaman et al. (2012). We then apply the proposed an-
alytic framework to an EHR-based study comparing weight loss across different techniques
for bariatric surgery among patients with and without impaired renal function in Section 6.
Section 7 concludes the paper with a discussion.

2. Motivation. Bariatric surgery is a commonly performed surgical procedure that has
been shown to achieve dramatic and lasting weight loss in obese patients (Li et al. (2019),
Maciejewski et al. (2016)). There are multiple treatment options for patients undergoing
bariatric surgery, the two most common of which are Roux-en-Y gastric bypass (RYGB) and
vertical sleeve gastrectomy (VSG). RYGB is a surgical procedure in which a small pouch
is created from the stomach and is connected to the small intestine, bypassing most of the
stomach, and has been considered the “gold standard” for decades. However, VSG, in which
part of the stomach is removed, has become increasingly popular, as it is believed to be less
complex, less risky and less invasive than RYGB (Zellmer et al. (2014)). In a retrospective
observational cohort study involving over 60,000 bariatric surgery procedures at 41 health
systems, adults who underwent RYGB were observed to have lost more weight at one, three
and five years than VSG but had higher 30-day rates of major adverse events (Arterburn et al.
(2018)).

There is also growing evidence that impaired renal function (e.g., chronic kidney disease)
is associated with increased risk of complications following bariatric surgery (Neff, Olbers
and le Roux (2013), Nguyen et al. (2011), Turgeon et al. (2012)). RYGB has also been shown
to be associated with more renal complications than VSG; in one observational study of 762
patients who underwent bariatric surgery, the risk of nephrolithiasis was higher for patients
undergoing RYGB compared to VSG (Lieske et al. (2015)). Oxalate nephropathy, which
generally results in rapid progression to end-stage renal disease, has also been reported in
association with RYGB (Nasr et al. (2008)). Given the complex relationship between renal
function and bariatric surgery, it is not well known whether the weight loss advantage of
RYGB compared to VSG holds among those with presurgical chronic kidney disease and, if
that advantage persists, whether that outweighs the potential increased risks associated with
RYGB.

We implement the proposed framework in an analysis of long-term weight loss among
patients in the DURABLE (DURAtion of Bariatric Long Term Effects) study, a large, ongo-
ing, NIH-funded, multicenter retrospective cohort study investigating the health outcomes of
patients who undergo bariatric surgery. Data in this study are derived from patient electronic
health records (EHR) in three healthcare systems: Kaiser Permanente Northern California,
Kaiser Permanente Southern California and Kaiser Permanente Washington. The amount of
available data regarding BMI and comorbid conditions varies widely between patients. One
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particular challenge is that the absence of an indicator for a condition, such as chronic kid-
ney disease, does not necessarily mean that renal function is normal. One must, therefore,
distinguish between the absence of a condition and missing data on whether the condition is
present. We return to these motivating questions in Section 6.

3. Methods.

3.1. Analyses based on complete data. In a random sample of size N, we define D as
the set of variables included in the analysis model (i.e., the model of substantive interest). We
refer once more to the hypothetical study population described in Table 1. In this example,
D = (X1, X2, X3, Y). In the presence of complete data, let U (8; D;) denote an individual’s
contribution to the (unweighted) complete-data estimating equations of the analysis model,
where 6 is the parameter of substantive interest.

3.2. A modification of the Seaman et al. (2012) approach to missing data. Let R; denote
the missingness pattern in D for the ith individual. We partition D; into D!", the missing
values of D for the ith individual, and D?, the observed values of D for the ith individual. In
the hypothetical study, if the ith individual has missingness pattern 1, then D" = (X3, ;)
and D? = (X ;, X2;). At this point we suppose that a decision is made by the analysis team
that, effectively, identifies a subsample of the N individuals who will be “included” in the
main analysis (i.e., directly contribute to estimation of ) and those who will be “excluded.”
Seaman et al. (2012) conceptualize this in the form of a user-specified function of the missing
data pattern, termed a “rule,” R. Here, we denote this rule, as applied to the ith individual,
by R; =R(R;), with R; = 1 indicating that the individual is included and R; = 0 indicating
that they are excluded.

Theorem 1 of Seaman et al. (2012) requires that the distribution of R depends only on
variables that are observed for all subjects in order to achieve unbiased estimation. In the
hypothetical example, suppose we define R(R;) to be equal to 1 when X is observed and 0
otherwise. Consequently, we include only individuals with missingness patterns 1, 2, 3 and 4
in the main analysis. The probability that 'R = 1 can depend only on X and Zj, since those
are the only fully observed variables for all subjects.

Among individuals with R = 1, some will have complete data in the sense that D is fully
observed and therefore U (6; D;) can be evaluated (i.e., missingness pattern 4). Others, how-
ever, may not, and Seaman et al. (2012) propose that any remaining missingness be resolved
via multiple imputation. Restricting to the subpopulation of subjects with R = 1, by Theo-
rem 1 of Seaman et al. (2012), any missing variables must be missing at random (MAR); that
is, the probability that data is missing can depend only on observed data (Rubin (1976)). In
the hypothetical example, the remaining missing variables to be imputed are X3 and Y, and
missingness in those variables can depend only on variables that are fully observed among in-
dividuals with R = 1: X1, X, Z1 and Z;. Whereas the general framework being introduced
in this paper matches that of Seaman et al. (2012), the most notable departure is the use of
improper imputation, as opposed to proper imputation. The following subsections formalize
the procedure.

3.3. Estimation. Let H be a vector of fully observed variables, some of which may be-
long to D, that predict the probability an individual has a missing pattern R; such that R; = 1.
In the hypothetical example in Table 1, only X; and Z; may be included in H. Specify
a model for pr(R = 1|H; «) indexed by «. Let Sy ;() = S¢(r; H;) denote an individual’s
contribution to the score equation for estimating pr(R = 1|H; «). Then, & is the solution to
estimating equations Z,N:1 Sa.i (@) =0, where & converges in probability to a limit «*. Define
W(; Hy=pr(R=1|H;a)™ .



ROBUST INFERENCE WHEN COMBINING IPW AND MI 131

Based on the missingness patterns observed in the population of individuals with R =1,
D is partitioned into {Df,, Dz}, where D, denotes the variables in D that are fully observed
among all individuals with R =1 and DJ; denotes variables that exhibit any missingness
among those individuals. In the hypothetical example, D% = (X1, X») and D7 = (X3,7).
Dy, ; and Dy, ; denote the values of Dg, and Dy, for the ith individual, respectively.

There is a subtle, yet important, distinction between Df, ; and D;" and between D7 ; and
D?: D, is defined by the missingness patterns of the entire sample of individuals with R =1,
whereas D" represents the values of variables that are missing for the ith individual alone.
D}" is completely unobserved. A “complete case” would have D" = &, but D ; would be
the ith individual’s values of the variables for which any individuals with R = 1 have missing
data. D} and D7 ; are defined analogously. In the hypothetical example, if the ith individual
has missingness pattern 3, D%,i = (X3,;,Y;) and D702,i = (X1,i, X2,;), whereas D" = X3;
and D} = (X1;, X2, Y;)

Next, define D as the set of variables distinct from D that, conditional on R = 1, are
associated with missingness in D and/or will be used for imputing D. DT must be fully
observed among individuals with R = 1. D7 is often needed to make the MAR assumption,
as described at the end of Section 3.2, tenable. In the hypothetical example the only variables
that may be included in DT are Z; and Z,. Although Z5 is not always observed, it is observed
for all individuals with R = 1, and it is not already included in D.

Specify an imputation model g(D% | D%, DI, R=1: Y¥r), where i indexes the model.
A possible imputation model in the hypothetical example could, therefore, be g(X3,7Y |
X1,X2,21,Z2, R = 1;¢). Let Sy ;(¥) denote an individual’s contribution to the score
equation for g(D% | D%, DY, R = 1;vy); that is, Sy.i(¥) = Blogg(D%’i | D%,i, DIT,
Ri = 1;¢)/0y. The observed score for the ith individual is then defined as Sf;}”?(W) =
E D [Sy.i(¥)|D?]. Then, 1} is the observed-data maximum likelihood estimator; that is, it is

the solution to estimating equations le_v: | S:Zl??(l//) =0, where 1/A/ converges in probability to
a limit *.

Missing values D" among individuals with R = 1 are improperly imputed M times using
the model g(D% | DY, D', R = 1; ). Throughout when referenced, an improper imputa-
tion procedure will refer to the method defined in Wang and Robins (1998), wherein the
preliminary estimate of the imputation model parameters (generally the maximum likelihood
estimator) is used to generate all imputations. Then, the estimating equations for the anal-
ysis model are solved using data from all M complete datasets, simultaneously, to obtain
the improper MI estimator. This is in contrast to a proper imputation procedure, in which
imputation model parameters are generally drawn M times from their Bayesian predictive
distribution such that Rubin’s rules provide valid inference, and then the estimating equa-
tions for the analysis model are solved within each of the M datasets and the M parameter
estimates averaged (Nielsen (2003)).

Each missingness pattern found in the data corresponds to a particular conditional distri-
bution for D" induced by the original imputation model that is fit. Then, D}" is imputed
using that derived conditional model. If, in the hypothetical example, we fit the imputation
model g(X3,Y | X1, X2, Z1, Z2, R = 1; ¥), then, in order to impute data for individuals with
missingness pattern 2, we would derive the imputation model g(Y | X1, X3, X3, Z1,Z2, R =
1; ¢) and impute missing values of Y with that induced model. As such, only one joint
imputation model needs to be fit from the data; every conditional model is induced by
that initial fit. Let D;n’(j ) denote the jth imputed value of D;" for j=1,..., M, and let

D _ ()
b =(p" Doy.
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Following multiple imputation, denote the contribution to the weighted estimating equa-
tions of the analysis model by individual i in the jth imputed dataset as

S0, 0, 9) = Sp(6. ., v DI, Hy) = R;W; (a; H)U (65 D),

where U (0; Di(j >), the ith individual’s contribution to the complete-data estimating equation
of the analysis model in the jth imputed dataset, is implicitly a function of ¢ because ¥ has
been used to generate the imputed data Dl.(J ). Let 6 be the solution to weighted estimating
equations

=z

1 L X 5
—MZZ (j) 0,a,9)=— 291(9 =0,

where 5‘9, i@, y)=M"1 Z = sy )(9 «, V), & is used to calculate the inverse-probability

weights and 1& has been used for imputation. Under suitable regularity conditions, 6 con-
verges in probability to a limit *. By Theorem 1 of Seaman et al. (2012), if:

(i) model pr(R = 1|H a) is correctly specified,

(ii) model g(D% F T R=1; Yr) is correctly specified,
(i) pr(R=1| D, D ,HY=pr(R=1|H),
(iv) p(R|D,DY,W,R=1)=p(R| D%, D", W,R=1) and
(v) DIt LLW | D%,DT,R: 1,

then, when M = oo, 0 is a consistent estimator of 6. (Note that above, p denotes a law, or
distribution, and pr denotes a probability.) Since H can be high dimensional and the true
weights W («; H) are typically unknown, by Corollary 1 of Seaman et al. (2012), an alterna-
tive to satisfying Condition (v) is to include the estimated weights W (&; H) in DT.

3.4. Inference. Whereas correct specification of the weighting and imputation models
are two of five conditions described in Section 3.3 that are sufficient for consistency of 6,
correct specification of these models is not required to ensure valid inference (at least with
respect to the limit of 6, 6*). The asymptotic variance of 6 is provided in Theorem 3.1,
followed by a consistent estimator for the variance.

THEOREM 3.1. If missing values are improperly imputed M times from a fully para-
metric imputation model g(Dp|D%, D', R=1,; 10) among individuals with R = 1, and 6

is estimated, as described in Section 3.3, then N'/2(6 — 6%) is asymptotically normal with
mean zero and variance ¥ = t~! Q‘L'_T, where

r=—E[8S(0,a*, %) /30 Jy_per Q= E[(6%, ", v*)®],
v(OF, o*, Y*) =Sy (6%, o, ¥*) — 81 Sule®) — kI, SV (W),
§=—E[0Sp(0*, 0, y*) /0 ] ,_pes  lo=—E[0Su()/da]
e =—E[s§" 0%, o, y*)sy™ P (v,
Iy = —E[3S5°W)/9v ]y,
Sy (%) = dlog g (D™D, DT, R = 1:) /3 [y—y -

a=a*’

Note A®%2 = AAT for any matrix A. The expectation is taken with respect to the density
(T, g(Dr' DY, DY, R = 1;))g(D%. DR = 1; ). Itis assumed that the derivatives
above exist, and all inverses can be taken as described.
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The proof of Theorem 3.1 can be found in the Supplementary Material (Section 1).
A consistent estimator of ¥ is ¥ =77 1Q7~ T, where

N
= _N" 12359,(9 &, 9)/007 |, = Z N®2,
i=1 i=1

A

ﬁi(é,&,lﬁ')zgg’i(é,& lZ’) 3 a_ Oll(a) KI]/;lSObS(w)

8

N
N7y 080,00, @, 9 /90 loms

i=l

N
Iy=—N"">"0Sqi@)/da’

i=1

R=—(NM)~ 1225(”(0 ST

i=1j=1
y=—N" ‘ZaS°bS<w>/aw i

S?,‘?‘”(z/x)—alogg( D \D¢, DI Ry = 1) /v 1,y -

Consistency follows from Slutsky’s theorem.

3.5. Code. We provide code in R for implementing the proposed methods. The code
makes use of the jacobian function in the numDeriv package for calculating the deriva-
tives needed for 8, &, I, and IAl/,. The code can accommodate any weighting model as long
as the user can specify the score equation Sy («, H;) and function for the weights W (&; H;).
The code can modified by the end user to accommodate any parametric imputation model.
Code and a corresponding tutorial can be found in the Supplementary Material Thaweethai
et al. (2021) and online at https://github.com/tthaweethai/robustipwmi.

4. A worked example. We consider a detailed, worked example where we are interested
in estimating the coefficients of a linear regression of outcome Y on a set of covariates X. This
implies that D = {X, Y'}. There is missingness in both X and Y, and so we choose to define
R(R) =1 when X is fully observed and 0 otherwise and then use a logistic regression with
predictors H to estimate the probability of fully observing X, where H is fully observed. We
then use the inverse of those probabilities as weights to account for exclusion of individuals
with any missingness in X. The only missingness that remains in D, once we restrictto R = 1
is in ¥ which implies that D’} =Y and DS, = X. We identify an additional set of variables
that are fully observed among individuals with R =1 to include in the imputation model,
which we define as DT. Collectively, we refer to {D%, D'} as Z, and so our imputation
model is a linear regression model with outcome Y, predictors Z and homoskedastic errors.
We use this model to impute missing ¥ among individuals with X fully observed.

An individual’s contribution to the estimating equation for estimating « is given by the
score for the weighting model:

Su(ot; Hi) = Sy.i () = Hi[R; — exp(a " H;){1 +exp(a H)} ']

We solve the estimating equations Z,N=1 S«.i (@) =0 to obtain &, from which we can generate
the probabilities used for weighting: pr(R; = 1|H;; &) = exp(@ " H;)[1 +exp(@ " H)]~".
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We define Ry ; to be an indicator of whether the ith individual has ¥ observed in addition
to X. Therefore, if Ry ; = 1, then it is necessarily true that R; = 1. We fit the following impu-
tation model among individuals with Ry ; = 1, indexed by parameter ¥, which we partition
intoy=(B",0)":

Y, = ﬁTZ,- +¢€;, wheree; ~N(0,0).
The contribution of individual i to the estimating equation for the imputation model is

S (W1 Y, Zi)
SO (s Yy, Zi)

_ Ryio2Z:(Y; — B Zi)
B RY,i{—U_] +o73(¥ — ﬁTZi)2} '

We solve the estimating equations ZIN °bs(¢) = 0 to obtain xp (BT, 6)". For each of M

SOy, Zi) = SPE () = [

imputations, following the improper imputation, we impute Y l.(] ) for individuals with Ri=1
but Ry; =0 as follows:

Yi(]) — /§TZI' + gi(])’
where €l~(j )
&. For individuals with R; = Ry,; = 1, ¥\/) = ¥; (i.e., their observed value). Finally, the
contribution of individual i in the jth imputed dataset to the weighted estimating equations
is

is a single draw from a normal distribution with mean O and standard deviation

So(6, ., v: DY, Hy) = S0, 0, ) = Ripr(R: = 1H;; &)~ X, (v — 67 X;).

We solve the estimating equations 1N=1 Zyzl ngi) (0,&, ) =0 to obtain 6. To estimate

var(9), we use the proposed estimator in Section 3.4, the inputs of which evaluate as follows:
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and the remaining inputs are sums of products of scores or other inputs defined above.
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5. Simulations.

5.1. Set-up. We conduct a simulation study modeled after the simulation study described
in Section 4 of Seaman et al. (2012) but introduce an additional level of model misspecifi-
cation to demonstrate the robustness properties of the proposed variance estimator. We con-
sider two main simulation settings: one with homoskedastic errors in the outcome variable,
precisely mirroring Seaman et al. (2012), and one with heteroskedastic errors in the outcome
variable which was introduced in Robins and Wang (2000) as a setting under which Rubin’s
rules are biased for variance estimation.

For N = 1000 individuals, we generated the following covariates: X is 1 with probability
0.5 and O otherwise, (X2, X3, X4) are independent and identically distributed normal random
variables with mean O and standard deviation 1 and X5 is normally distributed with mean
X> x X3 and standard deviation 1. Under homoskedastic errors, response Y is generated
from a normal distribution with mean —3 + X1 X7 + X1 X3 + 0.5X2 X35 + X4 + 0.5X5 and
standard deviation 1. Under heteroskedastic errors, Y is generated from a normal distribution
with the same mean but with standard deviation 1 if X{ =0and 2 if X| = 1.

X is observed for all individuals, but (X7, X3, X4, X5) is only observed with probability
0.8 — 0.6X and is otherwise missing. Given that (X,, X3, X4, X5) is observed, Y is ob-
served with probability [1 + exp(—1.5 + 0.6X5X4)]~! and is otherwise missing. Under this
missingness mechanism, approximately 50% of individuals have (X», X3, X4, X5) observed,
and, approximately, 40% have (X2, X3, X4, X5, Y) observed.

The analysis model is a linear regression assuming homoskedastic errors: ¥ = 6y + 62 X»> +
03 X3 + 6,3 X2X3 + e, where E(e| X2, X3) = 0. As in Seaman et al. (2012), upon integrating
over the distribution of X, X4 and X5, it can be shown that the analysis model is correctly
specified in the absence of missing data and the true value of the parameters induced by this
model is (6y, 02, 03, 623)=(—3, 0.5, 0.5, 1). In the heteroskedastic errors setting, however,
the analysis model is misspecified, since it assumes homoskedasticity.

5.2. Analysis approaches. We compare three strategies for estimating 6:

(i) use only complete cases,

(i) combine IPW and MI using a correctly specified weighting model and an imputation
model that contains all interaction terms such that it is correctly specified in the homoskedas-
tic error setting and

(iii)) combine IPW and MI as in strategy (ii), but using an imputation model that omits
certain interactions such that it is misspecified under both homoskedastic and heteroskedastic
erTors.

To combine inverse probability weighting and multiple imputation, we mirror the baseline
approach of Seaman et al. (2012) and define the criteria R(R) = 1 when (X2, X3, X4, X5) is
observed and impute missing ¥ among individuals with R(R) = 1. We define H = (1, X) T
to predict whether R; = 1 and use a correctly specified linear probability model for the
weights, pr(R = 1|H) = oo + o1 X1, which implies Sy(o; H;) = Hi(R; — aTH,-) and
pr(R; = 1|H;; @) = &' H;. While using a linear probability model is an unusual choice, there
is no risk of estimating negative weights because the only predictor, X1, is binary. In Section 4
we demonstrate how a logistic regression can be used for the weighting model and provide
full expressions for the particular combination of models used in this simulation study in the
Supplementary Material, Section 2.2. For strategy (ii), we use an imputation model that as-
sumes homoskedastic errors: ¥ = 87 Z 4+ ¢, where e ~ N(0, o) and Z = (1, X1, X2, X3, X4,
Xs, X1X2, X1X3, X2X3, X1X2X3)". Sl‘;}?f(xp) is defined as in Section 4. For strategy (iii),

we repeat strategy (ii) but use ZT in the place of Z, where Z' = Z \ {X2X3, X1 X2X3, X5}
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TABLE 2
Model specification under different analysis strategies

Model predictors Homoskedastic errors Heteroskedastic errors
Strategy Imputation Analysis Imputation Analysis Imputation Analysis
(i) CC N/A X* N/A v N/A X
(ii) IPW/MI Z X* v v X X
(iii) IPW/MI VAl X* x v x x

The analysis approaches defined in Section 5 correspond to different combinations of predictors for the imputation
and analysis models. Under different error structures (homoskedastic vs. heteroskedastic), each model is either
correctly specified (v') or misspecified (x). For IPW/MI, the weighting model is always correctly specified

Z=(,X1, X2, X3, X4, X5, X1 X2, X1X3, X2 X3, X1X2X3)T,
ZT=(1,X1, X2, X3, X4, X1 X2, X1 X3) ", X*=(1, X2, X3, X2X3) .

which, as explained in Seaman et al. (2012), causes 6,3 to be underestimated by approxi-
mately 60%. We summarize the consequences of each choice of model in each strategy on
model misspecification in Table 2.

All simulations were performed in R. For strategies (ii) and (iii) we compare three imputa-
tion techniques: improper imputation, proper imputation and Multiple Imputation by Chained
Equations, or MICE (van Buuren and Groothuis-Oudshoorn (2011)). Proper imputation was
performed using the method of Schenker and Welsh (1988). MICE was performed with the
MICE package in R, using the formulas argument to specify interactions in the imputation
model. This method was included as a comparison, as it is one of the most frequently used
tools for performing MI in practice.

To estimate standard errors, we use Rubin’s rules for all three imputation techniques but
use the proposed variance estimator of Section 3.4 for only improper and proper imputation.
Unlike improper imputation, the proper imputation estimator does not use the single prelimi-
nary estimate 1} obtained from the observed data to generate the M imputed datasets. Instead,
it uses a different quantity YY) for each imputed dataset, where each YY) is drawn from the
posterior density of ¥ given the observed data. Since the proposed estimator in Section 3.4
assumes an improper imputation procedure, we explain in the Supplementary Material (Sec-
tion 2.1) how the proposed estimator was adapted for proper imputation. We cannot use the
proposed variance estimation procedure, when MICE is used, because we do not know the
value of 1&0 ) that was used to generate each imputed dataset.

We generated 10,000 datasets and calculated 6 under each estimation strategy, the empir-
ical standard error of 6 (defined as the standard deviation of the parameter estimates) under
each strategy and the average estimated standard error using each variance estimation method.
We then calculated the bias of the parameter estimates 6 compared to the truth and the bias
of each standard error estimation method compared to the empirical standard error. M = 10
imputations were performed. For every analysis (besides the complete case analysis), we es-
timated 6 two ways: first, by combining all M quasi-complete datasets into a single dataset
and fitting the analysis model once, and, second, by fitting the analysis model in each of M
imputed datasets and averaging the point estimates.

5.3. Results. Across all simulations, the point estimates obtained by combining all M
datasets into a single dataset and fitting the analysis model once were practically identical to
the point estimates obtained by fitting the analysis model once for each imputed dataset and
averaging the point estimates. The largest absolute difference between these two quantities
for any single dataset was less than 1.0 x 10713,
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TABLE 3
Percent bias in point estimates for 6, N = 1000

. Homoskedastic errors Heteroskedastic errors
Imputation
Strategy method 6o (2 63 03 6o 6 03 023
i) CC N/A 0.0 —82.7 —60.1 0.0 0.0 —82.6 —60.1 0.1
(i1) IPW/MI Improper 0.0 —-14 —-14 0.3 0.1 —-13 —14 0.3
Proper 0.0 —14 —14 0.3 0.1 —-1.3 —-1.5 0.4
MICE 0.2 —4.6 -3.1 —-2.5 0.2 —4.7 -3.2 —-2.5
(iii) IPW/MI Improper 0.0 —-1.6 —-1.2 —22.2 0.0 —-1.5 —1.3 —-22.1
Proper 0.0 -1.6 -1.3 —22.2 0.1 —-1.6 —14 —-22.1
MICE —0.3 —-5.3 -39 —-21.0 —0.3 —-5.3 —4.0 —-21.0

Percent bias in parameter estimate is calculated by (é —60)/6 x 100, where 6 is the true value under the induced
marginal model. The strategies are introduced in Section 5.2 and summarized in Table 2.

Table 3 provides the percent bias in the analysis model point estimates for 6, compared
to the true value of 0. éz and 53 were approximately —83% and —60% biased, respectively,
using a complete case analysis (strategy i) under both error structures.

When improper and proper imputation were performed using an imputation model that
included all key interactions (strategy ii), combining [IPW and MI corrected the bias in these
estimates (between —1.5% and 0.4% bias) under both error structures. MICE was slightly
biased (between —4.7% and 0.2% bias). Notably, even though this imputation model is mis-
specified under heteroskedastic errors, it was still able to generate unbiased estimates of 6.
When key interactions in the imputation model were excluded, combining inverse probability
weighting with multiple imputation resulted in substantial bias in 623 (approximately 0.1%
bias to between —21.0% and —22.2% bias) under both error structures.

Figure 1 shows how the proposed variance estimator compares to Rubin’s rules for es-
timating the empirical standard error. Full numerical results and calculated percent biases
can be found in the Supplementary Material (Table 1). Under homoskedastic errors (panels a
and c, Figure 1), both inferential methods approximate the empirical standard error roughly
equally well, even when the imputation model omits some interactions (strategy ii; between
—7.3% and 2.8% bias for Rubin’s rules and between —7.2% and —1.6% bias for the pro-
posed estimator). As shown in panels (b) and (d) of Figure 1, under heteroskedastic errors,
for parameters (6p, 62, 63), Rubin’s rules substantially underestimates the empirical standard
error (between —11.5% and —5.8% bias), while the proposed variance estimation procedure
is considerably less biased (between —3.7% and —2.4% bias). As shown in panel (b), in the
presence of heteroskedastic errors, the proposed variance estimation procedure for 6,3 re-
duced the bias when all key interactions were included in the imputation model (—14.2% to
—7.5% and —12.3% to —7.4% bias for improper and proper imputation, respectively). When
the imputation model was missing some interactions, as shown in panel (d), Rubin’s rules
performed slightly better than the proposed variance estimation procedure at estimating the
standard error for 6,3 (—6.8% bias for the proposed method vs. between 1.2% and 2.0% for
Rubin’s rules). Despite containing all key interactions, the imputation model used in panel
(b) was still misspecified due to the error structure which explains why the proposed variance
estimator was less biased than Rubin’s rules for all four parameters.

MICE was sometimes slightly more efficient (i.e., had smaller empirical standard errors)
than improper or proper imputation which were approximately equally efficient. However,
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F1G. 1. Each panel represents the combination of a particular analysis strategy (rows) and simulation error
structure (columns), as defined in Section 5. In each panel and for each component of 6 obtained following
combining inverse probability weighting with multiple imputation, we consider three different imputation methods:
improper (I), proper (P) and MICE (M). Empirical standard errors (black squares) are plotted vertically against
average estimated standard errors using two methods: Rubin’s rules (white triangles) and the proposed variance
estimation procedure (white circles). Only Rubin’s rules were used to estimate standard errors when MICE was
used. Results are based on 10,000 simulations with sample size 1000. While the vertical axes are different in the
two rows of panels, the scales are the same.

Rubin’s rules still generally underestimated the standard error when MICE was used under
heteroskedastic errors.

When the sample size was increased from 1000 to 10,000, the proposed variance esti-
mation method was uniformly better at estimating the empirical standard error compared to
Rubin’s rules (Supplementary Material, Figure 1), thus resolving the observed phenomenon
that Rubin’s rules were less biased than the proposed variance estimator for 63 in panel (d).
That result is largely due to the small sample size in the original simulation study, as this was
not observed when the sample size was increased to 10,000. This is likely due to the fact that
the proposed variance estimator was derived under asymptotic conditions. Full simulation
results, including coverage probabilities, can be found in the Section 3 of the Supplementary
Material. We performed an additional simulation study where we considered misspecification
of the weighting model in addition to the imputation and analysis models, the results of which
can be found in Supplementary Material Section 5. The variance estimation procedure was
observed to be robust to the weighting, imputation and analysis models, though the additional
robustness to the weighting model was expected, since a sandwich-type estimator was used
to account for the weighting.



ROBUST INFERENCE WHEN COMBINING IPW AND MI 139

TABLE 4
Distribution of baseline covariates by surgical type

Variable Roux-en-Y gastric bypass (RYGB) Vertical sleeve gastrectomy (VSG)

Overall count (%)

Healthcare system
A
B
C

Sex
Female
Male

Race/Ethnicity
Black
Hispanic
White
Other

Year of surgery
2008
2009
2010

Age at time of surgery

39 or less
40 to 50
51 or more

7213 (76.6%)

653 (9.1%)
4046 (56.1%)
2514 (34.9%)

5882 (81.5%)
1331 (18.5%)

951 (13.2%)

2056 (28.5%)

3753 (52.0%)
453 (6.3%)

2380 (33.0%)
2359 (32.7%)
24774 (34.3%)

2248 (31.2%)
2399 (33.3%)
2566 (35.6%)

2198 (23.4%)

10 (0.5%)
1757 (79.9%)
431 (19.6%)

1776 (80.8%)
422 (19.2%)

452 (20.6%)

691 (31.4%)

977 (44.4%)
78 (3.5%)

189 (8.6%)
563 (25.6%)
1446 (65.8%)

703 (32.0%)
703 (32.0%)
792 (36.0%)

6. Application of proposed framework in a study of bariatric surgery and chronic
kidney disease.

6.1. Study population. We consider 9411 patients in the DURABLE study cohort, de-
scribed in Section 2, who underwent either RYGB (76.6%) or VSG (23.4%) between 2008
and 2010. For the purposes of minimizing patient reidentification, we henceforth mask the
names of the three healthcare systems in which patients received care randomly as A, B and
C. Demographic information for the patients included in the study are found in Table 4.

6.2. Analysis model and missing data. For this analysis we are interested in studying
whether the difference in weight loss between different surgical techniques is the same when
considering whether an individual has chronic kidney disease before surgery. To study this,
we consider the outcome of percent total weight change (PTWC) after bariatric surgery, de-
fined as BMI at follow-up minus BMI at baseline divided by BMI at baseline. We use this out-
come because PTWC has been found to be less confounded by baseline BMI than other com-
monly reported measures, such as percent excess weight loss (Hatoum and Kaplan (2012),
Maciejewski et al. (2016)). BMI at baseline is defined as the most recent BMI measurement
recorded in the 30 days leading up to and including the day of surgery. BMI at follow-up
is considered to be observed if there is at least one BMI measurement less than six months
before or after five years after the day of surgery. If there are multiple BMI measures in that
time window, we fit a linear regression to those BMI measurements as a function of time and
use that to obtain a “fitted” BMI at five years. Otherwise, we used the BMI measure closest
to the five-year time point. Usually, this has very little impact compared to taking the BMI
measure closest to five years, but there are very occasionally erratic BMI measurements very
different from surrounding measures but happen to be the closest to the five-year time point.
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Further details on this procedure can be found in the Supplementary Material, Section 7. Us-
ing these definitions, 10.8% and 32.1% of patients in the study were missing baseline and
follow-up BMI, respectively.

The substantive model of interest is a linear regression with outcome PTWC and the
following predictors, with the reference categories listed last: surgery type (RYGB/VSG),
site (A/C/B), sex (male/female), age category at time of surgery (39 or less/51 or more/40
to 50), year of surgery (2008/2009/2010), race/ethnicity (Hispanic/White/Other—including
Hawai’ian or Pacific Islander, Multiple, Asian, Native American or Alaskan Native, Other,
and Unknown/Black), baseline BMI category in kg/m? (39 or less/45 to 49/50 to 54/55 to
59/60 or greater/40 to 44), baseline Charlson—Elixhauser combined comorbidity score, as de-
fined by Gagne et al. (2011) (less than O/greater than 0/0), baseline chronic kidney disease (1
if present/0 if absent) and the interaction between surgical type and baseline chronic kidney
disease.

The Charlson—Elixhauser combined comorbidity score is calculated for a given time in-
terval by determining the presence or absence of 20 conditions, defined by specific ICD-9
codes. The presence of each condition (counted only once) is associated with a weight, and
the weights for the present conditions are summed to obtain an overall score. While the
absence of evidence in EHR for any comorbidities may be due to the true absence of any co-
morbidities (and, therefore, a score of 0), it may be due to missing data. A proxy method we
propose for determining whether the combined comorbidity score can be calculated for the
six months leading up to surgery will be by examining whether BMI or any comorbid con-
ditions are recorded in three time windows: zero to two, two to four and four to six months
before surgery. The implicit assumption is that, if there is at least some BMI or comorbid con-
dition recorded in the EHR during those periods, any other comorbid conditions in that six
month period would also be reliably captured; otherwise, it is missing. Using this definition,
27.5% of patients are missing baseline combined comorbidity scores.

One condition included in the combined comorbidity score is a diagnosis of chronic kidney
disease, which includes the following ICD-9 codes: 403.11, 403.91, 404.12, 404.92, 585.x,
586.x, V42.0, V45.1, V56.0 or V56.8. If any of these ICD-9 codes is present in the six months
before surgery, the patient is considered to have baseline chronic kidney disease. If there is
no evidence of chronic kidney disease and the combined comorbidity score is not missing as
defined previously, then the patient categorized as not having chronic kidney disease. If there
is no evidence of chronic kidney disease and the combined comorbidity score is missing, then
we say that chronic kidney disease status at baseline is missing. In other words, if someone is
missing their combined comorbidity score, their chronic kidney disease status is also missing,
unless there is evidence of chronic kidney disease at any point in the six months before
surgery. Using this definition, 26.6% of patients are missing chronic kidney disease status at
baseline.

6.3. Approach for addressing missingness. The analysis model can only be fit among
patients with complete data for BMI at baseline, follow-up, combined comorbidity score,
chronic kidney disease status, surgical type and all potential confounders (site, sex, age at
time of surgery, year of surgery and race/ethnicity category). We define this set of variables
as D, using the notation of Section 3. There is missingness in baseline and follow-up BMI,
combined comorbidity score and chronic kidney disease status.

We combine IPW and MI in this setting by first defining the inclusion rule R as equal
to 1 when baseline BMI, combined comorbidity score and chronic kidney disease status are
all measured. We fit a logistic regression model with outcome R and predictors H which
includes the potential confounders listed previously and surgical type. We then multiply im-
pute missing values of follow-up BMI (i.e., D7) using a linear regression imputation model
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TABLE 5
Distribution of baseline covariates and BMI by missingness pattern. R is an indicator of whether baseline BMI,
combined comorbidity score and chronic kidney disease status are all observed

R=1, R=1,
Variable R=0 follow-up BMI missing follow-up BMI measured
Overall count (%) 3140 (33.4%) 1888 (20.1%) 4383 (46.6%)

Counts (%), by missingness pattern

Surgery type

RYGB 2530 (80.6%) 1471 (77.9%) 3212 (73.3%)

VSG 610 (19.4%) 417 (22.1%) 1171 (26.7%)
Healthcare system

A 296 (9.4%) 130 (6.9%) 237 (5.4%)

B 1810 (57.6%) 1123 (59.5%) 2870 (65.5%)

C 1034 (32.9%) 635 (33.6%) 1276 (29.1%)
Sex

Female 2501 (79.6%) 1522 (80.6%) 3635 (82.9%)

Male 639 (20.4%) 366 (19.4%) 748 (17.1%)
Race/Ethnicity

Black 468 (14.9%) 228 (12.1%) 707 (16.1%)

Hispanic 905 (28.8%) 536 (28.4%) 1306 (29.8%)

White 1530 (48.7%) 984 (52.1%) 2216 (50.6%)

Other 237 (7.5%) 140 (7.4%) 154 (3.5%)
Year of surgery

2008 930 (29.6%) 516 (27.3%) 1123 (25.6%)

2009 952 (30.3%) 507 (26.9%) 1463 (33.4%)

2010 1258 (40.1%) 865 (45.8%) 1797 (41.0%)
Age at surgery

39 or less 1024 (32.6%) 712 (37.7%) 1215 (27.7%)

40 to 50 1063 (33.9%) 602 (31.9%) 1437 (32.8%)

51 or more 1053 (33.5%) 574 (30.4%) 1731 (39.5%)
Combined comorbidity score

<-1 - 388 (20.6%) 895 (20.4%)

0 - 797 (42.2%) 1757 (40.1%)

>1 - 703 (37.2%) 1731 (39.5%)

Chronic kidney disease status

Yes - 91 (4.8%) 277 (6.3%)
No - 1797 (95.2%) 4106 (93.7%)
Means (standard deviation), by missingness pattern
Baseline BMI (kg/mz) - 45.2 (7.6) 44.4 (7.3)
Follow-up BMI (kg/mz) - - 34.6 (7.1)

that conditions on variables in D that are fully observed for individuals with R =1 (D%),
which includes H as well as baseline BMI, combined comorbidity score and chronic kidney
disease status. Missing follow-up BMI among patients with R = 1 is improperly imputed
M = 50 times using this model. We compare this approach to a complete case analysis and
then compare the proposed estimation approach for the standard errors with Rubin’s rules.
The analysis cohort, stratified by missingness pattern, is described in Table 5.

6.4. Results. Table 6 includes the results of the complete case analysis compared to the
proposed analytic approach.
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TABLE 6
Regression coefficients and associated standard errors for a linear regression on percent total weight change
between baseline and five years under different missing data strategies

Complete cases IPW/MI
Std. err. Std. err.
Coef. Std. err. Coef. (proposed) (Rubin) Pct. diff.
(Intercept) —15.86 0.64 —15.78 0.65 0.69 —5.28
Surgery type: RYGB —6.64 0.42 —6.74 0.43 0.44 —1.66
Chronic kidney disease —3.03 1.56 —3.48 1.62 1.52 6.16
RYGB x CKD 3.02 1.78 3.02 1.83 1.74 4.84
Health System: A —2.30 0.74 —1.83 0.78 0.76 2.32
Health System: C 1.40 0.42 1.45 0.43 0.45 —-4.91
Sex: Male 3.00 0.46 3.07 0.47 0.47 —1.09
Age: <39 —1.29 0.44 —1.30 0.45 0.47 —4.37
Age: >51 0.59 0.40 0.68 0.41 0.45 —8.50
Race: White —1.81 0.50 —2.06 0.52 0.53 —2.80
Race: Hispanic —1.32 0.50 —1.62 0.52 0.54 —3.84
Race: Other —2.40 1.00 —2.62 1.02 0.96 5.96
Year of surgery: 2008 0.35 0.45 0.48 0.46 0.45 1.65
Year of surgery: 2009 —0.47 0.40 —-0.37 0.40 0.42 —3.54
Baseline BMI: <40 1.26 0.45 1.38 0.46 0.50 —8.60
Baseline BMI: 45-49 —1.24 0.46 —1.22 0.46 0.47 —2.35
Baseline BMI: >50 —1.58 0.50 —1.24 0.52 0.47 9.32
Comorbidity score: < —1 0.24 0.43 0.18 0.45 0.46 —2.14
Comorbidity score: >1 —-0.24 0.40 —0.05 0.41 0.40 0.84

Coef.: Regression coefficient, Std. err.: standard error, Pct. diff: [Std. err. (proposed)—Std. err. (Rubin)]/Std. err.
(Rubin) x100. Reference categories: Surgery type (VSG), Chronic kidney disease status (0), health system (B),
sex (Female), age category (40-50), race (Black), year of surgery (2010), baseline BMI category (40—44), and
combined comorbidity score (0). CKD refers to chronic kidney disease.

Adjusting for the variables included in the substantive model, patients who underwent
RYGB had greater percent total weight loss after five years than patients who underwent
VSG. Generally, it appears that the main effect of baseline chronic kidney disease is equal
in magnitude but opposite in direction to the interaction of RYGB with baseline chronic
kidney disease. We can interpret this to mean that, among patients undergoing VSG, those
with chronic kidney disease experienced greater percent weight loss than those without, but
among those undergoing RYGB, those with and without chronic kidney disease experienced
similar percent weight loss. An alternative interpretation is that the difference in percent
weight loss comparing RYGB to VSG was smaller among those with chronic kidney disease
at baseline compared to those without. Compared to the complete case analysis, IPW and
MI did not dramatically shift the conclusions one might draw regarding the associations of
interest in this study, as the standard errors were generally large compared to the differences
in the point estimates.

6.5. Robust variance estimation. When combining IPW with MI, we consider two meth-
ods for estimating standard errors: Rubin’s rules and the proposed robust variance estimator.
Standard error estimates were generally larger for IPW/MI compared to the complete case
analysis. Standard error estimates obtained from the proposed method, compared to Rubin’s
rules, were not uniformly larger or smaller, though for the effects of interest (main effect of
chronic kidney disease and the interaction of chronic kidney disease with surgery type) the
proposed standard error estimate was slightly larger.
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7. Discussion. Combining IPW and MI using the Seaman et al. (2012) approach re-
quires specification of three models: a weighting model used for IPW, an imputation model
used for MI and an analysis model. Asymptotically unbiased point estimation and variance
estimation via Rubin’s rules are guaranteed when these three models are correctly specified.
While we do not guarantee that point estimates obtained using the proposed framework are
asymptotically unbiased when one or more of these models are misspecified, we provide an
alternative procedure based on improper imputation that permits asymptotically valid vari-
ance estimation that is robust to misspecification of these models, based on Robins and Wang
(2000).

Although not explored in this paper, the proposed method for performing inference is also
robust to uncongeniality between the imputation and analysis models (Meng (1994)). Such
a situation can arise when the amount of information used to fit the imputation model and
generate imputations differs greatly from the analysis model, particularly in the presence
of interactions in one but not both models. The validity of Rubin’s rules in this setting has
been the topic of much debate (Kim et al. (2006), Meng and Romero (2003), Robins and
Wang (2000), Tang (2017)). While the Robins and Wang (2000) approach offers protection
against uncongeniality, multiple authors have pointed to the mathematical complexity of this
approach, exacerbated by the lack of available software for implementation (Hughes, Sterne
and Tilling (2016), Seaman, White and Leacy (2014)). We provide software in R in Sec-
tion 3.5 to overcome this hurdle and assist analysts in implementing the proposed method. If
the analyst does not use the provided software, we note that improper imputation is compu-
tationally more straightforward to perform compared to proper imputation and that improper
imputation was not found to be any less efficient than proper imputation in our simulations.

During the review process, one reviewer queried the utility of the point estimate, 6, if it
is not guaranteed to converge to 6; why would one care about inference for settings where
the analysis model is misspecified? While a reasonable query, we take the pragmatic position
that analysis models are likely almost always misspecified and, indeed, sometimes purposely
so. Moreover, the analysis model is generally specified in relation to the motivating research
question, where interest can lie in estimating marginal effects rather than modeling the precise
data generating mechanism. For example, in the application described in this paper we have
chosen to focus on an interaction effect with respect to one particular comorbidity (chronic
kidney disease) while ignoring other potential interactions with other comorbidities included
in the Charlson—Elixhauser comorbidity score. A model that adjusts for all potential interac-
tions in the interest of creating a model that is most likely to adhere to the true data generating
mechanism would likely result in standard errors that are too large to be useful. There are also
many patient characteristics and behaviors that are not routinely recorded in EHR that are
likely to impact the magnitude of weight loss among patients who undergo bariatric surgery,
including diet and exercise behaviors (Arterburn et al. (2013), Courcoulas et al. (2015)).
Omission of these factors would contribute to model misspecification, despite our best ef-
forts. Alternatively, one might be uninterested in modeling or unable to model the precise
functional form of covariate associations in a model, choosing to use first-order associations
rather than those that are higher order. Even though such a model might be misspecified, it
can still be worthwhile to obtain appropriate confidence intervals for point estimates that are
obtained.

Further, in the simulation study in Section 5 we observed that asymptotically unbiased
point estimates were obtained despite misspecification of both the imputation and analysis
models (i.e., 0 did, in fact, converge to ). When an imputation model with all interactions
(strategy ii) was used in the heteroskedastic errors setting, the resulting point estimates were
unbiased even though the imputation and analysis models were misspecified, as they both as-
sumed homoskedastic errors. The use of Rubin’s rules resulted in biased variance estimation
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whereas the proposed variance estimation procedure reduced that bias. When N = 10, 000,
that bias was eliminated entirely under the proposed estimation procedure, as shown in the
Supplementary Material Figure 1.

Practically, if the analyst is very concerned that the weighting and/or imputation models
are so severely misspecified such that the point estimates would not be useful, the analyst can
consider other strategies for handling missing data, such as doubly-robust methods, or semi-
parametric or nonparametric imputation procedures, such as Bayesian additive regression
trees (Xu, Daniels and Winterstein (2016)). However, the validity of doubly-robust methods
has been shown to be highly sensitive to minor misspecification of both models, so caution
must be taken (Kang and Schafer (2007), Seaman and Vansteelandt (2018)). If the analyst
decides to proceed with the general framework Seaman et al. (2012) introduced and combine
IPW with MI, an analyst can never definitively know whether their imputation or weighting
models are correctly specified and will, of course, never know if their estimate of 6 is asymp-
totically unbiased for its true value. Our suggestion for this setting is to consider calculating
standard errors using both Rubin’s rules and the proposed variance estimation approach.

One consideration when implementing the combined IPW/MI estimator is how imputation
is performed when R is defined such that multiple variables are to be imputed. This occurs,
for example, in the hypothetical example described in Section 3.3 where missingness in X7
is resolved using IPW and missingness in X3 and Y is resolved using MI. One way forward
is to model the missing variables using a multivariate normal distribution akin to the multi-
variate normal imputation (MVNI) strategy first implemented by Schafer (1997). While the
assumption that the missing data follow a multivariate normal distribution will frequently not
hold, particularly when some of the missing variables are categorical, there is some evidence
that MVNI performs reasonably well when an adaptive rounding procedure is used for im-
puting categorical variables (Bernaards, Belin and Schafer (2007), Lee and Carlin (2010)).
The robustness of this approach to the assumption of multivariate normality has been the sub-
ject of much debate; for further discussion of the performance of MVNI in the presence of
nonnormal data, see Horton and Kleinman (2007), Huque et al. (2018), Kropko et al. (2014),
Lee and Carlin (2017), von Hippel (2013), Xia and Yang (2016), Yucel, He and Zaslavsky
(2011).

We also illustrated how the proposed analytic framework can be used in a study of weight
change following bariatric surgery using weight measures derived from EHR. While the stan-
dard errors were moderately large, the results of the data analysis suggest that, regardless of
which inferential approach was used, RYGB resulted in greater percent total weight loss than
VSG but that the weight loss difference was smaller in magnitude when considering individ-
uals with chronic kidney disease at baseline. RYGB is already generally considered to be a
higher-risk procedure compared to VSG, both in general and with regards to renal function.
That the weight loss advantage of RYGB compared to VSG is slightly attenuated among sur-
gical candidates with chronic kidney disease provides further evidence that baseline chronic
kidney disease should be taken into consideration when making surgical treatment recom-
mendations. The impact of these results is, of course, limited by the dichotomization of
chronic kidney disease status, since chronic kidney disease is a progressive condition.

The consideration of missing data for EHR presented in this paper is just one possible
approach of many. For instance, we could have specified different “rules” for inclusion in the
imputation stage (i.e., redefining what it means for R = 1). Even within the same rule, there
are infinitely many ways one might have defined missingness: one could have considered a
wider window of time for eligible follow-up BMI measurements, or one could have defined
missingness in baseline Charlson—Elixhauser combined comorbidity score and chronic kid-
ney disease status in a way that could have resulted in more or less stringent requirements
for completeness. In developing these definitions, one must consider both the clinical mean-
ingfulness of the data being captured and the process by which data appears in the EHR, a
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process sometimes referred to as the data provenance (Haneuse and Daniels (2016)). One fu-
ture avenue of research is assessment of sensitivity to EHR data that is believed to be missing
not at random (i.e., whether a value is missing is related to the value itself or other missing
data), which is well acknowledged as a concern when handling EHR data, as patients tend to
interact more with the healthcare system when they are sick compared to when they are well
(Pivovarov et al. (2014)). A key consideration is how inference can be performed in a robust
fashion in that setting.
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SUPPLEMENTARY MATERIAL

Supplement to ‘“‘Robust inference when combining inverse-probability weighting and
multiple imputation to address missing data with application to an electronic health
records-based study of bariatric surgery”. (DOI: 10.1214/20-A0OAS1386SUPPA; .pdf).
We provide the proof for Theorem 3.1, full results from the simulation study, and results
when increasing the sample size to N = 10,000. We also describe a second simulation study
that considers misspecification of the weighting model. We also provide additional simu-
lations describing the asymptotic equivalence of certain aspects of improper compared to
proper imputation. We conclude with information about how potential data entry errors were
corrected for when defining BMI measured at follow-up in the data application of Section 6.

R code for ‘“Robust inference when combining inverse-probability weighting and
multiple imputation to address missing data with application to an electronic health
records-based study of bariatric surgery”. (DOI: 10.1214/20-A0OAS1386SUPPB; .zip). R
code and tutorial for implementing the robust variance estimator presented in this paper.
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